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ABSTRACT

The use of fuzzy logic to model and manage uncertainty in a rule-based system places

high computational demands on an inference engine. In an earlier paper, we introduced a

trainable neural network structure for fuzzy logic. These networks can learn and extrapolate

complex relationships between possibility distributions for the antecedents and consequents

in the rules. In this paper, the power of these networks are further explored. The

insensitivity of the output to noisy input distributions (which are likely if the clauses are

generated from real data) is demonstrated as well as the ability of the networks to

internalize multiple conjunctive clause and disjunctive clause rules. Since different rules

(with same variables) can be encoded in a single network, this approach to fuzzy logic

inference provides a natural mechanism for rule conflict resolution.

1. INTRODUCTION.

In dealing with automated decision making problems, and computer vision in

particular, there is a growing need for modeling and managing uncertainty. Computer vision

is beset with uncertainty of all types. A partial list of the causes of such uncertainty include:

complexity of the problems,

questions which are ill-posed,

vagueness of class definitions,

imprecisions in computations,

noise of various sorts,

ambiguity of representations, and

problems in scene interpretation.
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Rule-based approaches for handling these problems have gained popularity in recent years

[1-6]. They offer a degree of flexibility not found in traditional approaches. The systems

based on classical (crisp) logic need to incorporate, as an add-on, the processing of the

uncertainty in the information. Methods to accomplish this include heuristic approaches [7,

8], probability theory [9,10], Dempster-Shafer belief theory [4,5,11], and fuzzy set theory

[5,6,12-14].

Fuzzy logic, on the other hand, is a natural mechanism for propagating uncertainty

explicitly in a rule base. All propositions are modeled by possibility distributions over

appropriate domains. For example, a computer vision system may have rules like

IF the range is LONG, THEN

the prescreener window size is SMALL;

or

IF the color is MOSTLY RED, THEN

the steak is MEDIUM RARE is TRUE.

Here, LONG, SMALL, MOSTLY RED and TRUE are modeled by fuzzy subsets over

appropriate domains of discourse. The possibility distributions can be generated from

various histograms of feature data extracted from images, fuzzification of values produced

by pattern recognition algorithms, experts expressing (free form) opinions on some

questions, or possibly generated by a neural network learning algorithm.

The generality inherent in fuzzy logic comes at a price. Since all operations involve

sets, rather than numbers, the amount of calculations per inference rises dramatically. Also,

in a fuzzy logic system, generally more rules can be fired at any given instant. One

approach to combat this computational load has been the development of special purpose
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chips which perform particular versions of fuzzy inference [15]. Artificial Neural Networks

offer the potential of parallel computation with high flexibility. In an earlier paper [16], we

introduced a backpropagation neural network structure to implement fuzzy logic inference.

In this paper we demonstrate further properties of that network. In particular, we show the

insensitivity of the networks to noisy input distributions and to their ability to internalize

rules with multiple conjunctive and disjunctive antecedent clauses.

2. FUZZY LOGIC AND NEURAL NETWORKS.

The original fuzzy inference mechanism extended the traditional modus ponens rule

which states that from the propositions

PI: If X is A Then Y is B

and P2: XisA,

we can deduce Y is B. If proposition P2 did not exactly match the antecedent of P1, for

example, X is A', then the modus ponens rule would not apply. However, in [17], Zadeh

extended this rule if A, B, and A' are modeled by fuzzy sets, as suggested above. In this

case, P1 is characterized by a possibility distribution:

1-L_r) " R where

ix_(u,v)- max {(l-lx,t(u)),Ixj)(v)}.

Itshould be noted thatthisformula correspondsto the statement"notA or B",the

logicaltranslationof PI. An alternatetranslationof the ruleP1 which correspondsmore

closelyto multivaluelogicis

Ixs(u,v)= rain{l,{(1- ix.i(u))+ Ixs(v)}},[17],
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called the bounded sum.

In either case, Zadeh now makes the inference Y is B' from i.tR and _A' by

Id

This is called the compositional rule of inference.

While this formulation of fuzzy inference directly extends modus ponens, it suffers

from some problems [18,19]. In fact, if proposition P2 is X is A, the resultant fuzzy set is

not exactly the fuzzy set B. Several authors [18-20] have performed theoretical

investigations into alternative formulations of fuzzy implications in an attempt to produce

more intuitive results.

In using fuzzy logic in real rule-based systems, the possibility distributions for the

various clauses in the rule base are normally sampled at a fixed number of values over their

respective domains of discourse, creating a vector representation for the possibility

distribution. Table I shows the sampled versions of the "trapezoidal" possibility distributions,

used in the simulation study, sampled at integer values over the domain [1,11]. Clearly, the

sampling frequency has a direct effect on the faithfulness of the representation of the

linguistic terms under consideration and also on the amount of calculation necessary to

perform inference using a composition rule. For a single antecedent clause rule, the

translation becomes a two dimensional matrix and the inference is equivalent to maxtrix-

vector multiplication. As the number of antecedent clauses increases, the storage

(multidimensional matrices) and the computation in the inference process grows

exponentially.
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Neural network structures offer a means of performing these computations in parallel

with a compact representation. But the ability of such a network to generalize from an

existing training set is the most valuable feature. In [16], we introduced the neural network

architecture for fuzzy logic. Figure 1 displays a three layer feed-forward neural network

which is used in fuzzy logic inference for conjunctive clause rules. It consisted of an input

layer to receive the possibility distributions of the antecedent clauses, one hidden layer to

internalize a representation of the relationships, and an output layer to produce the

possibility distributions of the consequent.

The input layer is not fully connected tO the hidden layer. Instead, each antecedent

clause has its own set of hidden neurons to learn the desired relationship. This partitioning

of the hidden layer was done to ease the training burden for multiple clause rules, and to

treat each input clause with its hidden units as a functional block. The training was

performed using the standard back propagation technique [21].

3. EXPERIMENTS.

The neural network architecture performed very well in generalizing the complex

relationships between inputs and outputs. Table II (from [16]) shows the results of the

training and testing of a network to implement the rule: IF X is LOW Then Y is HIGH;

whereas Table III gives the situation for a rule with two conjunctive antecedent clauses. In

both cases, the performance of the networks matched our intuitive expectation.

Figure 2 shows typical responses of a neural network to noise in the input clause. It

can be seen that the errors in the result are of the same order as the error in the input. If

the networks are trained with fewer relationships, e.g. the traditional modus ponens
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expectations, this error drops significantly.

In order to implement rules with disjunctive antecedent clauses, networks with two

hidden layers were necessary. Table IV displays training relationships for a two clause

disjunctive rule. Note that there are 23 input/output triples necessary to enable the network

to respond appropriately. The training, using backpropagation, of a single hidden layer

network, of the type shown in figure 1, failed to converge on this complex training set. This

caused us to investigate a two hidden layer structure where the f'trst hidden layer was the

same as in figure 1 and the second hidden layer contained 6 neurons totally connected to

those of the first hidden layer and to the nodes of the output layer. This network converged

in 4073 passes through the training set with a total-sum-of-squared error of less than 0.001

for the entire training ensemble. We feel that this is a remarkable achievement, given the

diversity of the responses to the antecedent possibility distributions which were necessary.

This disjunctive structure was further tested with 18 input pairs of clauses including

twelve pairs with varying amounts of additive gaussian noise. For this test set the average

total-sum-of-squared-error per trial was 0.075. In other words, the match to the expected

output in all cases was very good.

As a final note, in [16] we demonstrated that a neural network structure of this type

could encode multiple different rules which shared common antecedent clause variables.

The packing of several rules into a single network has a surprising side benefit of providing

a natural means of conflict resolution in fuzzy logic.
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4. CONCLUSION.

Fuzzy logic is a powerful tool for managing uncertainty in rule-based systems. Neural

network architectures offer a means of relieving some of the computational burden inherent

in fuzzy logic. Also, these structures can be trained to learn and extrapolate complex

relationships between antecedents and consequents, they are relatively insensitive to noise

in the inputs, and provide a natural mechanism for conflict resolution.
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Figure 1. A three layer feed forward neural network for fuzzy logic

inference
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Rule: IF X is MEDIUM THEN Y is HIGH

MEDIUM .00 .00 .25 .50 .75 1.0 .75 .50 .25 .00 .00

INPUT .06 .02 .35 .50 .79 1.0 .72 .54 .29 .01 .00

TSS error = 0.020
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Figure 2(a) Response of rule network to an input with small amount of additive gaussian
noise.
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MEDIUM .00 .00 .25 .50 .75 1.0 .75 .50 .25 .00 .00

INPUT .00 .08 .24 .52 .77 1.0 .64 .41 .43 .00 .00
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1.2

1.0

0.8

0.6

_ HIGH
0.4

OUTPUT
0.2

0.0 "-" T "-. T • I • • i _ I
0 2 4 6 8 10 12

Figure 2(b) Response of rule network to an input with a larger amount of additive
gaussian noise.
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Table I. The meaning of linguistic terms defined on the

domain [1,11] and sampled at integer points.

Label

LOW 1.00 0.67 0.3310.00

VERY LOW 1.00 0.45 0.11 0.00

MORL LOW 1.00 0.82 0.57 0.00

NOT LOW 0.000.33 0.67 1.00

NOISY LOW (I) 1.0010.70 0.40 0.00

NOISY LOW (2) 1.00i0.70 0.30 0.00

NOISY MEDIUM 0.00 0.00 0.30 0.53

SHIFTED LOW 1.00 I.O0 1.00 0.67

MEDIUM 0.00 0.00 0.25 0.50

MORL MEDIUM 0.00 0.00 0.50 0.71

NOT MEDIUM 1.00 1.00 0.75 0.50

HIGH 0.00 0.00 0.00 0.00

VERY HIGH 0.00 0.00 0.00 0.00

MORL HIGH 0.00 0.00 0.00 0.00

UNKNOWN 1.00 1.00 1.00 1.00

Hembershi p

0.00 0.00 0.00 O.OOiO.O0 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00!0.00 0.00 0.00 0.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 O.OO!O.O0 0.00 0.00

0.00 0.00 0.00 0.0010.00 0.00 0.00

0.81 1.00 0.80 0.50 0.20 0.00 0.00

0.33 0.00 0.00 0.00 0.00 0.00 0.00

0.75 1.00 0.75 0.50 0.25 0.00 0.00

0.87 1.00 0.87 0.71 0.50 0.00 0.00

0.25 0.00 0.25 0.5010.751.00 1.00

0.00 0.00 0.20 0.400.60 0.80 1.00

0.00 0.00 0.04 0.16 0.36 0.64 1.00

0.00 0.00 0.45 0.63 0.77 0.89 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00

MORL = more or less.

Note: VerynA is determined by IXv_,a(x) - laA(x)"÷I

MORLnA is determined by IXMO_. (X) - [I.tA(X)]U"'I
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Table II. Performance of Fuzzy Logic Rule network with 8 hidden neurons for rule

IF X is LOW THEN Y is HIGH.

A. Traininq Data*

Input

LOW
VERY LOW

MORL LOW

NOT LOW

Output

HIGH

VERY HIGH

MORL HIGH

UNKNOWN

Training terminated when the total sum of

squared error dropped below e = .001

Bm Testing Results

Input

VERY 2 LOW

MORL z LOW

MEDIUM

VERY MEDIUM UNKNOWN

MORL MEDIUM UNKNOWN

HIGH UNKNOWN

NOISY LOW (!)

NOISY LOW (2)

SHIFTED LOW

Expected Actual Output
Output

VERY 2 HIGH .00 .00 .00 .00 .00 .00 i.03 .10 .27 ,56 1.0

MORL 2 HIGH .00 .01 .01 .01 .00 01 .56 .71 .82 .91 1.0

UNKNOWN .99 .99 .99 .99 .99 !.99 .99 .99 .99 .99 1.0

HIGH

HIGH

.98 .98

•99 .99

.99 .99

•00 .00

•00 .00

•09 .09

.98

.99

.99

.00

.00

.12

.98

.99

.99

.00

.00

.09

.98 i.98 .99 .99 .99 .99 1.0

.99 !.99 .99 .99 .99 .99 .99

.99 i.99 .99 .99 .99 .99 .99
,,r

.00 .00 1.26 .47 .66 .83 1.0

.00 .00 !.19 .39 .59 .80 1.0

.09 .09 1.91 .92 .94 .97 1.0

Total Sum
Squared
Error

.007

•03O

.OOI

.003

.001

.001

.013

.0001
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Table III. Performance of a two antecedent clause Fuzzy Logic Rule

network with 16 hidden neurons (two groups of eight).

A. Training Data*

Input

(LOW,MEDIUM)

(VERY LOW,VERY MEDIUM)

(MORL LOW,MORL MEDIUM)

(NOT LOW,MEDIUM)

(LOW,NOT MEDIUM)

Output

HIGH

VERY HIGH

MORL HIGH

UNKNOWN

UNKNOWN

Training converged in 1823 iterations.

B. Testing Results

Input

(NOISY LOW(1),MEDIUM)

(NOISY LOW(2),MEDIUM)

(VERY2 LOW,MEDIUM) .00 .00 .00 .00 .00 .00 .19 .38 .60 .80

(NOISY LOW(1),NOISY MEDIUM .00 .00.00!.O0 .00 .00 .20 .41 .61 .81

(LOW,VERY 2 MEDIUM)

(VERY2 LOW,VERY 2 MEDIUM)

(MORL2 LOW,MORL 2 MEDIUM)

(NOT LOW,NOT MEDIUM)

(LOW,SHIFTED MEDIUM)

(MEDIUM,LOW)

Actual Output

.00 .00 .00 .00!.00 .00 .20 .40 .60 .80 1.0

.00 .00 .00 .00 .00 .00 .19 .40'.60 .80! 1.0

.00 .00 .00 .00 .00 .00 .05 .17 .36 .64

.01 .01 .01 .01.0I .OI .03 .12 .29 .58

.01 .OI .OI .OI .01 .01 .55 .70 .81 .gl

1.0 1.0 1.0 1.0 I.O 1.0 1.0 1.0 1.0 1.0

.97 .97 .97 .97 .97 .97 .99 .99 .99 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 j I.O

Closest

Linguistic
Term

HIGH

HIGH

1.0 HIGH

1.0 HIGH

1.0 VERY HIGH

1.0 VERY 2 HIGH

I.O MORL 2 HIGH

1.0 UNKNOWN

UNKNOWN

UNKNOWN
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Table IV. Training Data for the two disjunctive clause rule:

IF X is LOW OR Y is MEDIUM THEN Z is HIGH.

Input

(Very, MorL) LOW: *

• ; (Very, MorL) MEDIUM
Not LOW; Not MEDIUM

MEDIUM; LOW

HIGH; LOW

HIGH; Very LOW

UNKNOWN, HIGH

Output

(Very, MorL) HIGH

(Very, MorL) HIGH
UNKNOWN

UNKNOWN
UNKNOWN

UNKNOWN

UNKNOWN

* - LOW, MEDIUM, HIGH

Training converged in 4073 iterations, with TSS

error for entire training set less than 0.00!
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